DAPT Therapy in Asians: What May Be Different Between Asian and Caucasian?

Jeehoon Kang, MD Cardiovascular Center, Seoul National University Hospital, Korea • I, Jeehoon Kang, have no financial conflicts of interest to disclose concerning the presentation

SNUH ⁰ 서울대학교병원 Seoul National University Hospital Cardiovascular Center

Contents

1. Ischemic / Bleeding risk in *East Asians*

2. New generation P2Y12 inhibitors in East Asians

3. Proposal of a new Asian score for Ischemia/Bleeding score

Contents

1. Ischemic / Bleeding risk in *East Asians*

2. New generation P2Y12 inhibitors in East Asians

3. Proposal of a new Asian score for Ischemia/Bleeding score

Current Guidelines for Antiplatelet therapy

SNUH ^및 서울대학교병원 Seoul National University Hospital Cardiovascular Center

Valgimigli et al, EHJ 2018;39,213-254

Current Guidelines for Antiplatelet therapy

SNUH ^및 서울대학교병원 Seoul National University Hospital Cardiovascular Center

Valgimigli et al, EHJ 2018;39,213-254

Ischemic / Bleeding risk in *East Asians*

- East Asians have a different lschemic/Bleeding threshold, compared to Westerns \checkmark
- East Asian paradox \checkmark
 - *Higher* clopidogrel resistance, BUT with *Lower* ischemic events. \checkmark
- East Asians are more prone to Bleeding events

Europeans Americans East Asians

J Kang, HS Kim. Kor Circ J 2018, Levine GL et al. Nature Rev Cardiol 2014., Jeong YH, et al. Science Bulletin 2019.

Individual patient level, landmark meta-analysis of 7 RCTs

SNUH ^및 서울대학교병원 Seoul National University Hospital Cardiovascular Center

Individual patient level, landmark meta-analysis of 7 RCTs

Ischemic outcomes and Bleeding outcomes from time of randomization
 Analysis by Race

SNUH 🗸 서울대학교병원 Seoul National University Hospital Cardiovascular Center

Individual patient level, landmark meta-analysis of 7 RCTs

- Ischemic outcomes and Bleeding outcomes from time of randomization
- Analysis by DAPT duration and Race
- Bleeding events significantly increased by prolonged DAPT, only in Asians!

Individual patient level, landmark meta-analysis of 7 RCTs

- Probability Risk Ratio of Bleeding to Ischemia - Calculated as " Bleeding risk / Ischemic risk "

"Asians have a higher 'probability risk ratio' compared to Non-Asians." (Asians are more prone to bleeding events)

Contents

1. Ischemic / Bleeding risk in *East Asians*

2. New generation P2Y12 inhibitors in East Asians

3. Proposal of a new Asian score for Ischemia/Bleeding score

Results from the TRITON TIMI 38 / PLATO trials

- Primary endpoint : Cardiovascular Death, Myocardial Infarction, Stroke

"Both agents proved efficacy and safety outcomes, mainly in the Western population" SNUH 친 서울대학교병원 Seoul National University Hospital Cardiovascular Center

Results from the PHILO RCT

- An Asian Mirror study of the PLATO trial

- Absence of the beneficial effect of Ticagrelor, rather a positive HR (hazardous for Ticagrelor!)

	Ticagrelor	Clopidogrel	HR (95% CI)	
	90 mg b.i.d. (n=401)	75 mg o.d. (n=400)		
Primary				
Composite of CV death/MI (excluding silent MI)/stroke	36 (9.0)	25 (6.3)	1.47 (0.88–2.44)	
Post-hoc				
Composite of CV death/spontaneous MI/stroke	18 (4.5)	13 (3.3)	1.39 (0.68–2.85)	
Secondary				
Composite of all-cause mortality/MI (excluding silent MI)/stroke	37 (9.2)	25 (6.3)	1.51 (0.91–2.50)	
Composite of CV death/total MI/stroke/RI (including SRI)/TIA/Other ATE	38 (9.5)	32 (8.0)	1.20 (0.75-1.93)	
MI (excluding silent MI)	24 (6.0)	15 (3.8)	1.63 (0.85–3.11)	
Peri-procedural MI	18	12	-	
Spontaneous MI	6	3	-	
CV death	9 (2.2)	7 (1.8)	1.28 (0.48-3.45)	
Stroke	9 (2.2)	6 (1.5)	1.50 (0.54-4.23)	
All-cause mortality	10 (2.5)	7 (1.8)	1.42 (0.54–3.74)	

SNUH ^및 서울대학교병원 Seoul National University Hospital Cardiovascular Center

S Goto et al. Circ J. 2015;79:2452

Analysis of the KAMIR-NIH

- 13,707 consecutive AMI patients, a Nationwide Prospective registry of AMI patients.

SNUH 전 서울대학교병원 Seoul National University Hospital Cardiovascular Center J Kang, JK Han, HS Kim et al. Thromb Haemost. 2018;118(3):591

Analysis of the KAMIR-NIH

- 13,707 consecutive AMI patients, a Nationwide Prospective registry of AMI patients.
- Highly distinct baseline characteristics between patients using clopidogrel, ticagrelor and prasugrel.

	AC (6,411)	AP (993)	AT (1,708)	p-value
Demographics				
Age (y)	64.7 ± 12.7	$56.7 \pm 10.0^{\rm a}$	$62.5 \pm 12.1^{b,c}$	<0.001
Male	4,755 (72.1%)	911 (89.4%) ^a	1,350 (77.4%) ^{b,c}	<0.001
BMI (kg/m ²)	$\textbf{23.9} \pm \textbf{3.5}$	25.1 ± 3.2^a	$24.2\pm3.4^{b,c}$	<0.001
Hypertension	4,387 (72.4%)	570 (66.1%) ^a	1,126 (71.9%) ^b	0.001
Diabetes	2,145 (32.6%)	317 (31.2%)	499 (28.7%) ^c	0.006
Dyslipidemia	755 (15.3%)	118 (18.4%)	187 (15.9%)	0.138
Chronic renal failure	2,373 (37.1%)	120 (12.0%) ^a	453 (26.5%) ^{b,c}	<0.001
Previous MI	694 (10.6%)	99 (13.1%)	151 (11.6%)	0.079
FHx. of CAD	451 (7.1%)	78 (7.8%)	103 (6.1%)	0.216
Current smoking	2,489 (38.8%)	560 (55.3%)ª	740 (42.9%) ^{b,c}	<0.001
Index presentation with STEMI	3,089 (47.0%)	604 (59.4%) ^a	939 (53.8%) ^{b,c}	<0.001
Laboratory findings				
LVEF (%)	51.8 ± 11.2	52.5 ± 10.3	52.8 ± 10.3^{c}	0.001
• RWMI	1.42 ± 0.39	1.43 ± 0.36	1.41 ± 0.37	0.745
WBC (/µL)	$10,410 \pm 5,090$	$11,140 \pm 4,090^{a}$	$10,\!460\pm1,\!980^{b}$	<0.001
Haemoglobin (g/dL)	13.7 ± 3.0	14.7 ± 4.6^a	$14.1 \pm 2.0^{b,c}$	<0.001

	AC (6,411)	AP (993)	AT (1,708)	<i>p</i> -value
Angiographic findings				
Type B2/C of target vessel	4,901 (82.5%)	874 (89.8%)	1,514 (90.3%)	<0.001
Vessel disease				<0.001
 One-vessel disease 	3,054 (48.5%)	578 (57.5%)ª	841 (48.6%) ^b	<0.001
 Two-vessel disease 	1,884 (29.9%)	267 (26.5%)	509 (29.4%)	0.096
 Three-vessel disease 	1,106 (17.5%)	126 (12.5%) ^a	310 (17.9%) ^b	<0.001
 Left main disease 	259 (4.1%)	35 (3.5%)	72 (4.2%)	0.621
Stent generation				
• BMS	266 (4.0%)	37 (3.6%)	66 (3.8%)	0.765
First-generation DES	69 (1.3%)	10 (1.1%)	24 (1.6%)	0.577
 Second-generation DES 	4,990 (94.9%)	856 (95.6%)	1,439 (95.6%)	0.413
Stent length	$\textbf{29.2} \pm \textbf{14.1}$	$\textbf{28.6} \pm \textbf{13.8}$	$\textbf{29.9} \pm \textbf{13.8}$	0.056
Stent number	1.0 ± 0.6	1.1 ± 0.5^{a}	1.1 ± 0.5 ^c	<0.001

SNUH ^및 서울대학교병원 Seoul National University Hospital Cardiovascular Center

Analysis of the KAMIR-NIH

- 13,707 consecutive AMI patients, a Nationwide Prospective registry of AMI patients.
- Highly distinct baseline characteristics between patients using clopidogrel, ticagrelor and prasugrel.

	AC (6,411)		AT (1,708)	p-value
Demographics				
Age (y)	64.7 ± 12.7	56.7 ± 10.0^{a}	$62.5\pm12.1^{b,c}$	<0.001
Male	4,755 (72.1%)	911 (89.4%)ª	1,350 (77.4%) ^{b,c}	<0.001
BMI (kg/m ²)	23.9 ± 3.5	25.1 ± 3.2^{a}	$24.2\pm3.4^{b,c}$	<0.001
Hypertension	4,387 (72.4%)	570 (66.1%)ª	1,126 (71.9%) ^b	0.001
Diabetes	2,145 (32.6%)	317 (31.2%)	499 (28.7%) ^c	0.006
Chronic renal failure	2,373 (37.1%)	120 (12.0%) ^a	453 (26.5%) ^{b,c}	<0.001
Current smoking	2,489 (38.8%)	560 (55.3%)°	740 (42.9%) ^{b,c}	<0.001
Index presentation with STEMI	3,089 (47.0%)	604 (59.4%) ^a	939 (53.8%) ^{b,c}	<0.001
Laboratory findings				
LVEF (%)	51.8 ± 11.2	52.5 ± 10.3	52.8 ± 10.3^{c}	0.001
WBC (/µL)	10,410 ± 5,090	$11,140 \pm 4,090^{a}$	$10,\!460 \pm 1,\!980^{b}$	<0.001
Haemoglobin (g/dL)	13.7 ± 3.0	14.7 ± 4.6^a	$14.1\pm2.0^{b,c}$	<0.001

	AC (6,411)	AP (993)	AT (1,708)	p-value
Angiographic findings				
Type B2/C of target vessel	4,901 (82.5%)	874 (89.8%)	1,514 (90.3%)	<0.001
Vessel disease				<0.001
One-vessel disease	3,054 (48.5%)	578 (57.5%)ª	841 (48.6%) ^b	<0.001
 Two-vessel disease 	1,884 (29.9%)	267 (26.5%)	509 (29.4%)	0.096
 Three-vessel disease 	1,106 (17.5%)	126 (12.5%) ^a	310 (17.9%) ^b	<0.001
Left main disease	259 (4.1%)	35 (3.5%)	72 (4.2%)	0.621
Stent number	1.0 ± 0.6	1.1 ± 0.5^{a}	1.1 ± 0.5^{c}	<0.001

SNUH ^및 서울대학교병원 Seoul National University Hospital Cardiovascular Center

Results from the KAMIR-NIH

- 13,707 consecutive AMI patients, a Nationwide Prospective registry of AMI patients.
- Primary endpoint : MACCE (Cardiac death, MI, stent thrombosis, stroke), Major bleeding
- Crude outcome analysis

Can AP and AT decrease events compared to AC ? Which may neutralize the increased bleeding risk?

SNUH ^[] 서울대학교병원 Seoul National University Hospital Cardiovascular Center

Results from the KAMIR-NIH

- 13,707 consecutive AMI patients, a Nationwide Prospective registry of AMI patients.
- Primary endpoint : MACCE (Cardiac death, MI, stent thrombosis, stroke), Major bleeding
- Crude outcome

Can AP and AT decrease events compared to AC ? Which may neutralize the increased bleeding risk?

Results from the KAMIR-NIH

- 13,707 consecutive AMI patients, a Nationwide Prospective registry of AMI patients.
- Primary endpoint : MACCE (Cardiac death, MI, stent thrombosis, stroke), Major bleeding
- PSM analysis
 - : showed NO DECREASE in ischemic events, with a INCREASE in bleeding events,

by both ticagrelor and prasugrel.

SNUH ^것 서울대학교병원 Seoul National University Hospital Cardiovascular Center

Reduced dose of new generation P2Y12 inhibitors may be a breakthrough Results from the PRASFIT-ACS trial

- Efficacy outcomes similar to the TRITON-TIMI38 trial despite 1/3 dose of prasugrel

Wiviott S et al. NEJM 2007;357:2001-2015, Saito S et.al. Circ J. 2014;78(7):1684-92

Great expectations of the results from the HOST-RP-ACS trial

- low dose prasugrel in Korean patients.
- RCT of ~3,400 ACS patients, enrolled finished, in clinical follow-up.
- First report expected in mid 2020

Contents

1. Ischemic / Bleeding risk in *East Asians*

2. New generation P2Y12 inhibitors in East Asians

3. Proposal of a new Asian score for Ischemia/Bleeding score

Ischemic and bleeding risk in East Asians

- ✓ How can we assess the ischemic and bleeding risk in East Asians?
- ✓ Previous scores include the DAPT score, PRECISE-DAPT score, and the PARIS score
- ✓ Are these scores applicable to East Asians?

	Setting	Predicted Outcome	Development cohort	Validation cohort	Number of variables
DAPT	PCI patients in DAPT event free for 12 mon	Ischemic/Bleeding endpoints DAPT RCT (1 between 12-30 months pts)		C Index: 0.64 for ischemic and bleeding	5 clinical 3 procedural
PARIS	PCI patients on DAPT	Ischemic/Bleeding endpoints at 24 months after PCI	4190 multicenter registry	0.65 for ischemia / 0.64 for bleeding	Thrombotic: 6 clinical Bleeding: 6 clinical
PRECISE- DAPT	PCI patients on DAPT	Bleeding events at 12 months after PCI	14963 patients of pooled RCTs	0.66	5 clinical

JAMA. 2016;315(16):1735-1749, Lancet. 2017;389(10073):1025-1034, JACC 2016;67(19):2224-2234

Grand-DES Registry 10 years of clinical excellence

Dedicated 3-year follow-up for contemporary DESs

Seoul National University Hospital & other 55 centers across the country

(
	Allocated stent(s)	Biomatrix/ Nobori/ Biomatrix Flex	Xience Prime	Xience V/ Promus	Resolute Integrity	Resolute
	Enrollment	2010.4~2014.11.	2010.12~2012.8.	2008.4~2010.5.	2011.10~2014.7	2009.1~2010.6.
	Patients	3007	2076	3078	3004	2007
	Lesions	4070	2899	4176	4099	2801
	Participating centers	24	26	29	22	25
patients lesions		Biolimus- 3000-Korea		Excellent Prospective Cohort		Resolute Korea
2310	TT3		Excellent Prime		Resolinte	

13172

18045

Ischemic and bleeding risk in East Asians

Discriminative value of Previous scores: Based on the Grand-DES registry

PARIS score

Proposal of a new Asian score

Uniquely for East-Asians

Proposal of a new Asian score for Ischemia/Bleeding score

- ✓ In real world **East Asian patients** receiving PCI with **2nd generation DESs**,
- ✓ To assess *both* ischemic risk and bleeding risk
- ✓ To assess HBR patients
- ✓ To evaluate the optimal DAPT strategy for PCI patients (escalation, de-escalation of DAPT strategy)
- ✓ Better than current scoring systems
- ✓ With a *clinically applicable* scoring system.

The A-DAPT score (Asian Dual Antiplatelet Therapy Score)

Proposal of a new Asian score for Ischemia/Bleeding score

✓ The ADAPT score

- ✓ Derived from the 'Grand DES registry'
- ✓ Validated in the HOST-ASSURE, NIPPON RCT pooled cohort

Adjunctive Cilostazol Versus Double-Dose Clopidogrel After Drug-Eluting Stent Implantation

The HOST-ASSURE Randomized Trial (Harmonizing Optimal Strategy for Treatment of Coronary Artery Stenosis–Safety & Effectiveness of Drug-Eluting Stents & Anti-platelet Regimen)

Kyung Woo Park, MD, PtiD,* Si-Flyuck Kang, MD,* Jin Joo Park, MD,* Han-Mo Yang, MD, PtiD,* Hyun-Jac Kang, MD, PtiD,* Bon-Kwon Koo, MD, PtiD,* Byoung-Eun Park, MD, PtiD,i Kwang Soo Cha, MD, PtiD,‡ Jay Young Rhew, MD, PtiD,# Hui-Kyoung Jeon, MD, PtiD,* Sanghyun Kim, MD, PtiD,¶ Ju Hyeon Oh, MD, PtiD,# Myung-Ho Jeong, MD, PtiD,* Sanghyun Kim, MD, PtiD,¶ Yung-Kuk Hwang, MD, PtiD,# Jung-Han Yoon, MD, PtiD,* Sanghyun Kim, MD, PtiD,¶ Yung-Kuk Hwang, MD, PtiD,‡ Jung-Han Yoon, MD, PtiD,## Hyuck-Moon Kwon, MD, PtiD,*** In-Ho Chae, MD, PtiD,## Hyuck-Moon Kwon, MD, PtiD,***

Seoul, Cheonan, Busan, Jeonju, Uijeongbu, Ulsan, Changwon, Gwangju, Cheongju, Wonju, Goyang, Suwon, and Seongnam, Republic of Korea

KW Park, HS Kim. JACC Cardiovasc Interv. 2013

Dual Antiplatelet Therapy for 6 Versus 18 Months After Biodegradable Polymer Drug-Eluting Stent Implantation

Masato Makamura, MD, PuD^{*} kaisake lijima, MD, PuD^{*} Junya Ako, MD, PuD^{*} Toshino Shinke, MD, PuD^{*} Hisayuki Okada, MD, PuD^{*} Yoshuki Ku, MD, PuD^{*} Shin Takiuchi, MD, PuD^{*} Shin Anzal, MD, PuD^{*} Hiroyaki Tanaka, MD, PuD^{*} Yasunori Ueda, MD, PuD^{*} Shin Takiuchi, MD, PuD^{*} Yasunori Nishida, MD^{*} Hiroshi Ohira, MD, ⁴ Katsuhin Kawagachi, MD, PuD^{*} Makoto Katoni, MD, PuD^{*} Hiroyaki Niinuma, MD, PuD^{*} Kazuto Omiya, MD, PuD^{*} Takahu Marta, MD, PuD^{*} Kan Zen, MD, PuD^{*} Oshinori Yasala, MD, PuD^{*} Kenji Inoue, MD, PuD^{*} Satashi Menta, MD, PuD^{*}, Masaleki Ochinori Yasala, MD, PuD^{*} Hiroyashi Xioki, MO^{*} on bahliot If the NIPYON Investigators

M Nakamura. JACC Cardiovasc Interv. 2017

SNUH 이 서울대학교병원 Seoul National University Hospital Cardiovascular Center J Kang, HS Kim et al. Thrombosis and Haemostatsis 2019 in press

- ✓ Calculation of a "Net ADAPT score"
 - ✓ (Ischemic ADAPT score) (Bleeding ADAPT score)
 - ✓ Well-plotted with the 'estimated net event probability', with a crossing point around the 'Net ADAPT score =0'
 - ✓ 'Net ADAPT score > 0' denotes a higher 'ischemic risk', with a need of HIGHER intensity antiplatelet therapy
 - ✓ 'Net ADAPT score < 0' denotes a higher 'bleeding risk', with a need of LOWER intensity antiplatelet therapy

✓ Validation cohort (HOST-ASSURE, NIPPON RCT pooled cohort)

✓ Moderate discriminative value with the ROC curve

✓ Well-plotted Net-ADAPT score

✓ Validation cohort (HOST-ASSURE, NIPPON RCT pooled cohort)

Ischemic events

✓ Moderate discriminative value with the ROC curve

[✓] Well-plotted Net-ADAPT score

The ADAPT score is

1.0

#. A unique 'Asian oriented' scoring system

- #. In real-world patients receiving PCI with 2nd generation DESs.
- #. Can evaluate *both ischemic and bleeding risk*.

#. Can integrate ischemic and bleeding risks to guide optimal antiplatelet therapy intensity.

3302

	0.633,	95% CI 0	.564–0.7	03, p<0.0	01	Num. at risk					
0.0	0.2	0.4	0.6	0.8	1.0	B-ADAPT ≤3	5458	5111	4752	4296	3848
		1-Spe	cificity			B-ADAPT >3	1099	987	878	762	653

Ischemic and Bleeding risk in East Asians

- ✓ East Asians have a *distinct ischemic/bleeding trade-off* compared to the Western population.
 - ✓ Lower ischemic risk with a higher bleeding risk
 - ✓ Therefore, *high bleeding risk* is a very important issue in East Asians.

- ✓ New generation P2Y12 inhibitors should be prescribed with caution in *East Asians*.
 - ✓ A lower dose may be a feasible strategy to maintain efficacy and minimize bleeding events.

The 'ADAPT score' can be used to assess the ischemic and bleeding risk of an individual, and the Net-ADAPT score can be used to guide optimal DAPT therapy.

Thank you for your attention!

ORAL UNIVERSITY HOSPITAL

-